An overview of neutron skin physics from nuclear structure and reaction: method and implications

Pawel Danielewicz

Facility for Rare Isotope Beams Michigan State University

RBRC Workshop:

Physics Opportunities from the RHIC Isobar Run Brookhaven National Laboratory

25-28 January, 2022

Nuclei as Binary Systems

Preference for $N \sim Z$

Extrapolation to neutron stars with $N \gg Z$?

Expanding Chart of Nuclides

Accelerator tech progress pushes chart boundaries out...
Thoennessen IJMP E24(15)1530002:

over 3000 nuclides (over 10× than stable!) known by now Up to 1000 new nuclides expected in next decade!

Protons & Neutrons

 $N \approx Z$ favored when strong interactions dominate

Pauli principle + interactions more attractive for np pairs than pp or nn (also Pauli, but at quark level)

Mass formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

symmetry energy term $a_a(A)$?

Relative spatial distribution of the species?

Neutron Skin

Relative Distribution of Species?

Statistical considerations: entropy vs energy

Example: $H_2O + NaCl$

Above freezing & below saturation, salinity (relative concentration of *NaCl*) is uniform, entropy & energy go along but, when water freezes, *NaCl* gets expelled from ice, as energy wins

Industrial desalination:

Neutron Skin Danielewicz

Energy in Uniform Matter

$$\frac{E}{A}(\rho_n, \rho_p) = \frac{E_0}{A}(\rho) + S(\rho) \left(\frac{\rho_n - \rho_p}{\rho}\right)^2 + \mathcal{O}(\dots^4)$$

symmetric matter

$$S(
ho) = S(
ho_0) + rac{L}{3} rac{
ho -
ho_0}{
ho_0} + \dots$$
Unknown: $S(
ho_0)$? L ?

(a)symmetry energy

$$\rho = \rho_n + \rho_p$$

Net $\rho = \rho_n + \rho_D$ isoscalar

Difference $\rho_n - \rho_p$ isovector

$$\rho_a = \frac{A}{N-Z} \left(\rho_n - \rho_p \right)$$
 isoscalar

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{N - Z}{A} \rho_{a}(r) \right]$$

 ρ & ρ_a universal in isobaric chain!

Energy min in Thomas-Fermi:

$$ho_a(r) \propto rac{
ho(r)}{S(
ho(r))}$$

FRIB

 $\mathsf{low}\; \mathcal{S} \Leftrightarrow \mathsf{high}\; \rho_{\boldsymbol{a}}$

Symmetry-Energy Stiffness: M & R of n-Star

$$egin{aligned} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{aligned}$$

In neutron matter:

$$\rho_{\rm p} \approx 0 \ \& \ \rho_{\rm n} \approx \rho.$$

Then,
$$\frac{E}{A}(\rho) \approx \frac{E_0}{A}(\rho) + S(\rho)$$

Pressure:

$$P = \rho^2 \frac{\mathrm{d}}{\mathrm{d}\rho} \frac{E}{A} \simeq \rho^2 \frac{\mathrm{d}S}{\mathrm{d}\rho} \simeq \frac{L}{3\rho_0} \rho^2$$

Schematic Calculation by Stephen Portillo (Harvard U)

Stiffer symmetry energy correlates with larger max mass of neutron star & larger radii

Neutron Skin Danielewicz

ints in half-∞ matter PD&Lee NPA818(09)36

Isoscalar ($\rho = \rho_n + \rho_p$; blue) & isovector ($\rho_a \propto \rho_n - \rho_p$; green) densities displaced relative to each other.

As $S(\rho)$ changes, $\rho_a(r) \propto \frac{\rho(r)}{S(\rho(r))}$, so does displacement or aura

Correlation Between Stiffness & ²⁰⁸Pb *n*-Skin

Vinas et al., EPJA50(14)1

From skin to *n*-star...

Experimental Efforts

Experiments directly probing ground-state geometry:

- Elastic scattering
- Parity-violation in electron scattering
- Quasielastic charge exchange reactions
- Charge radii of mirror nuclei
- Charge-changing reactions

Other data testing symmetry energy:

- Dipole polarizability
- Masses
- Heavy ions: diffusion, π^-/π^+ ratio, ...
- Neutron star: maximal M, M-R relation, deformability
- •

Sample Symmetry-Energy Constraints

Parity Violation in e-Scattering: PREX & CREX

Parity violation in interference: $\sim n$

$$\sigma \propto |\mathbf{M}_{\gamma} + \mathbf{M}_{Z^0}|^2$$

= $|\mathbf{M}_{\gamma}|^2 + \mathbf{M}_{\gamma} \times \mathbf{M}_{Z^0}^* + \dots$

for spin-0 nucleus

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim 10^{-6}$$

Parity Violation in e-Scattering: PREX & CREX

Adhikari et al., PRL126(21)172502 + Palatchi@DNP'21

Differently Probing 2 Densities??

Jefferson Lab

Direct: $\sim p$

Interference: $\sim n$

PD, Singh, Lee NPA958(17)147 [after Dao Tien Khoa]

elastic: $\sim p + n$

charge exchange: $\sim n - p$

Simultaneous Fits to Elastic & Charge-Change: ⁴⁸Ca

Different radii for densities/potentials: $R_a = R + \Delta R$

KD: no skin!

PD/Singh/Lee NPA958(17)147

Thickness of Isovector Aura

6 targets analyzed, differential cross section + analyzing power

Colored: Skyrme predictions. Arrows: half-infinite matter

FRIB

Thick \sim 0.9 fm isovector aura!

~Independent of A. . . .

Diffuseness: Isovector-Isoscalar Difference

Colored: Skyrme predictions. Arrows: half-infinite matter Sharper isovector surface than isoscalar!

Isovector Aura

Heaven vs Earth

after Chuck Horowitz

Tensions...

Conclusions

- In nuclear surface, isovector density leaks out of isoscalar density. In effect of isovector aura, rms radius for majority nucleons is greater than for minority, or majority-nucleon skin appears
- Size of aura or skin size is a direct consequence of dependence of symmetry energy on ρ , at $\rho \lesssim \rho_0$, and diffuseness for isoscalar density
- Constraints on skins emerge from data that directly reflect nuclear geometry and from data that in other ways probe ρ-dependence of symmetry energy
- As uncertainties in skin constraints or in ρ -dependence of symmetry energy become more seriously determined, clear tensions emerge that need to be taken seriously

DOF DF-SC0019209

Neutron Skin Danielewicz